
Chapter 3 — Integer Math 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 3

Integer Math

Recap - MIPS Instructions

n Consider a comparison instruction:

slt $t0, $t1, $zero

where $t1 contains the 32-bit number: 1111 01…01

What gets stored in $t0?

n The result depends on whether $t1 is a signed or
unsigned number – the compiler/programmer must track
this and accordingly use either slt or sltu

slt $t0, $t1, $zero stores 1 in $t0
sltu $t0, $t1, $zero stores 0 in $t0

Chapter 3 — Integer Math 2

n 32-bit signed numbers (2’s complement):
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
...

1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

Recap - Number Representations

maxint

minint

§ Converting < 32-bit values into 32-bit values
§ Copy the most significant bit (the sign bit) into the “empty” bits

0010 -> 0000 0010
1010 -> 1111 1010

§ Sign extend versus zero extend

MSB
LSB

Integer Addition
n Example: 7 + 6

n Binary addition is similar to decimal addition.
n For subtraction, simply add the negative number:

n A - B involves taking the two’s complement of B (negating
B’s bits and adding 1) and adding to A.

Chapter 3 — Integer Math 3

A MIPS ALU Implementation

§ Overflow bit for signed
arithmetic (add,
addi,sub)

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31

result31

less

. .

.

0

0
set

add/subt op

ovf

zero

. . .

§ Zero detect (slt,
slti,sltiu,sltu,
beq,bne)

Signed Integer Addition
n Example: 7 + 6

n An Overflow occurs if the result is out of range
n Adding a + and - operand, no overflow possible.
n Adding two + operands

n Overflow if sign bit is 1.
n Adding two – operands

n Overflow if sign bit is 0.

Chapter 3 — Integer Math 4

Signed Integer Subtraction
n Add negation of second operand.
n Example: 7 – 6 = 7 + (–6)

+7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

n Overflow if result out of range
n Subtracting two + or two – operands, no overflow.
n Subtracting + from – operand

n Overflow if result sign is 0.
n Subtracting – from + operand

n Overflow if result sign is 1.

Summary of Overflow Conditions

Operation Operand A Operand B Result indicating
overflow

A + B ≥ 0 ≥ 0 < 0
A + B < 0 < 0 ≥ 0
A - B ≥ 0 < 0 < 0
A - B < 0 ≥ 0 ≥ 0

§ Overflow occurs when the result of an operation cannot be
represented in 32-bits, i.e., when the sign bit contains a value
bit of the result and not the proper sign bit.

§ When adding operands with different signs or when subtracting
operands with the same sign, overflow can never occur.

Chapter 3 — Integer Math 5

Summary of Overflow Conditions

Operation Operand A Operand B Result indicating

overflow

A + B ≥ 0 ≥ 0 < 0

A + B < 0 < 0 ≥ 0

A - B ≥ 0 < 0 < 0

A - B < 0 ≥ 0 ≥ 0

§ MIPS signals overflow with an exception – an unscheduled

procedure call where the Exception Program Counter (EPC)

contains the address of the instruction that caused the

exception.

§ MIPS addu and subu instructions will not cause an overflow

– to detect the overflow, other instructions would have to be

executed.

Detecting Overflow Logically
n When adding two's complement numbers, overflow will only occur if:

n The numbers being added have the same sign;
n The sign of the result is different then the sign of the two operands.

n If we perform the addition
an-1 an-2 ... a1 a0

+ bn-1bn-2… b1 b0

= sn-1sn-2… s1 s0

n Overflow can be detected as

n Overflow can also be detected as

where cn-1and cn are the carry in and carry out of the most significant bit.

111111 -×-×-+-×-×-= nnnnnn sbasbaV

1-Ä= nn ccV

Chapter 3 — Integer Math 6

MIPS Arithmetic Logic Unit (ALU)

n Must support the Arithmetic/Logic
operations of the ISA
add, addi, addiu, addu
sub, subu
mult, multu, div, divu
and, andi, nor, or, ori, xor, xori
beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

§ With special handling for
§ Sign extend – addi, addiu, slti, sltiu
§ Zero extend – andi, ori, xori

§ Overflow detection – add, addi, sub

What about Performance?
n Critical path of n-bit ripple-carry adder is n(1-bit delay)

n Solution – throw hardware at it (Carry Lookahead).

A0

B0

1-bit
ALU

result0

CarryIn0

CarryOut0

A1

B1

1-bit
ALU

result1

CarryIn1

CarryOut1

A2

B2

1-bit
ALU

result2

CarryIn2

CarryOut2

A3

B3

1-bit
ALU

result3

CarryIn3

CarryOut3

Chapter 3 — Integer Math 7

Multiply
n Binary multiplication can be just a bunch of right shifts

and adds:

multiplicand
multiplier

partial
product
array

double precision product

n

2n

n
can be formed in parallel
and added in parallel for
faster multiplication

Multiplication Example

Multiplicand 1000
Multiplier x 1001

1000

0000
0000

1000

Product 1001000

n In every step:
n Multiplicand is shifted.
n Next bit of multiplier is examined (also a shifting step).
n If this bit is 1, shifted multiplicand is added to the product.

Chapter 3 — Integer Math 8

HW Multiplication Hardware

n 32-bit ALU and multiplicand are untouched.
n The sum keeps shifting right.
n At every step, number of bits in product + multiplier = 64,

hence, they share a single 64-bit register.

Multiplication Example

multiplicand

32-bit ALU

multiplier Control

add
shift
rightproduct

0 1 1 0 = 6

0 0 0 0 0 1 0 1 = 5
add 0 1 1 0 0 1 0 1

0 0 1 1 0 0 1 0
add 0 0 1 1 0 0 1 0

0 0 0 1 1 0 0 1
add 0 1 1 1 1 0 0 1

0 0 0 1 1 1 1 0
add 0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

= 30

Chapter 3 — Integer Math 9

Notes

n The previous algorithm also works for signed

numbers (negative numbers in 2’s complement

form).

n We can also convert negative numbers to positive,

multiply the magnitudes, and convert to negative if

signs are different.

n The product of two 32-bit numbers can be a 64-bit

number -- hence, in MIPS, the product is saved in

two 32-bit registers – HI and LO.

n At every step, number of bits in product + multiplier

= 64, hence, they share a single 64-bit register.

Faster Multiplier

n Uses multiple adders
n Cost/performance tradeoffs

n A clock is not required.
n Much higher hardware cost.

n Can be pipelined
n Several multiplications performed in parallel.

Chapter 3 — Integer Math 10

MIPS Multiplication Instructions
n Two 32-bit registers for product

n HI: most-significant 32-bits.
n LO: least-significant 32-bits.

n Instructions
n mult rs, rt / multu rs, rt

n 64-bit product in HI/LO
n mfhi rd / mflo rd

n Move from HI/LO to rd
n Can test HI value to see if product overflows 32 bits

n mul rd, rs, rt

n Least-significant 32 bits of product –> rd

Division
n Division is just a bunch of quotient digit guesses and

left shifts and subtracts.
dividend = quotient x divisor + remainder

n

dividend
divisor

partial
remainder
array

quotientn

remainder
n

0 0 0

0

0

0

Chapter 3 — Integer Math 11

Division
n Check for 0 divisor.
n Long division approach

n If divisor bits ≤ dividend bits
n 1 bit in quotient, subtract.

n Otherwise
n 0 bit in quotient, bring down next

dividend bit.
n Restoring division

n Always do the subtract, and if
remainder is < 0, add divisor back.

n Signed division
n Divide using absolute values.
n Adjust sign of quotient and remainder

as required.

1001
1000 1001010

-1000
10
101
1010
-1000

10

n-bit operands yield n-bit
quotient and n-bit remainder.

quotient

dividend

remainder

divisor

74/8 = 9 rem 2

Division Hardware - Left Shift and Subtract

divisor

32-bit ALU

quotient Control

subtract
shift
leftdividend

remainder

0 0 1 0 = 2

= 3 with 0 remainder

0 0 0 0 0 1 1 0 = 6
0 0 0 0 1 1 0 0

sub 1 1 1 0 1 1 0 0 rem neg, so ‘ient bit = 0
0 0 0 0 1 1 0 0 restore remainder
0 0 0 1 1 0 0 0

sub 1 1 1 1 1 1 0 0 rem neg, so ‘ient bit = 0
0 0 0 1 1 0 0 0 restore remainder
0 0 1 1 0 0 0 0

sub 0 0 0 1 0 0 0 1 rem pos, so ‘ient bit = 1
0 0 1 0 0 0 1 0

sub 0 0 0 0 0 0 1 1 rem pos, so ‘ient bit = 1

Chapter 3 — Integer Math 12

n Divide (div and divu) generates the remainder in hi
and the quotient in lo
div $s0, $s1 # lo = $s0 / $s1

hi = $s0 mod $s1

n Instructions mfhi rd and mflo rd are provided to move
the quotient and remainder to registers in the register file.

MIPS Divide Instruction

0 16 17 0 0 0x1A

Faster Division
n Can’t use parallel hardware as in multiplier

n Subtraction is conditional on sign of remainder.
n Faster dividers (e.g. SRT division) generate multiple

quotient bits per step (4 on today’s high-end processors)
n Uses table lookup.
n Still requires multiple steps.

n http://en.wikipedia.org/wiki/Division_(digital)

http://en.wikipedia.org/wiki/Division_(digital)

Chapter 3 — Integer Math 13

Next Class - Floating Point

n What can be represented in N bits?
n Unsigned 0 to 2N-1
n 2’s Complement - 2N-1 to 2N-1 - 1

n But, what about--
n Very large numbers?

n 9,349,398,989,787,762,244,859,087,678
n 1.23 x 1067

n Very small numbers?
n 0.0000000000000000000000045691
n 2.98 x 10-32

n Fractional values? 0.35
n Mixed numbers? 10.28
n Irrationals? p

